Pattern theory is a distinctive approach to the analysis of all forms of real-world signals. At its core is the design of a large variety of probabilistic models whose samples reproduce the look and feel of the real signals, their patterns, and their variability. Bayesian statistical inference then allows you to apply these models in the analysis of new signals.
This book treats the mathematical tools, the models themselves, and the computational algorithms for applying statistics to analyze six representative classes of signals of increasing complexity. The book covers patterns in...
Pattern theory is a distinctive approach to the analysis of all forms of real-world signals. At its core is the design of a large variety of probab...
This book introduces a new theory in Computer Vision yielding elementary techniques to analyze digital images. These techniques are a mathematical formalization of the Gestalt theory. From the mathematical viewpoint the closest field to it is stochastic geometry, involving basic probability and statistics, in the context of image analysis. The book is mathematically self-contained, needing only basic understanding of probability and calculus. The text includes more than 130 illustrations, and numerous examples based on specific images on which the theory is tested. Detailed exercises at...
This book introduces a new theory in Computer Vision yielding elementary techniques to analyze digital images. These techniques are a mathematical ...