One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimensional subspaces, e.g., in order to reduce the noise in overmodeled problems, - hance the performance in case of estimated statistics, and/or save compu- tional complexity in the design of the estimator which requires the solution of linear equation systems. This book provides a comprehensive overview over reduced-rank ?lters where the main emphasis is put on matrix-valued ?lters whose design requires the solution of linear systems with multiple...
One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimen...