Altogether, the biochemical, technical and economic limitations on existing proka- otic and eukaryotic expression systems and the growing clinical demand for complex therapeutic proteins have created substantial interest in developing new expression systems for the production of therapeutic proteins. To that end, plants have emerged in the past decade as a suitable alternative to the current production systems, and today their potential for production of high quality, much safer and biologically active complex recombinant pharmaceutical proteins is largely documented. The chapters in this...
Altogether, the biochemical, technical and economic limitations on existing proka- otic and eukaryotic expression systems and the growing clinical dem...
Altogether, the biochemical, technical and economic limitations on existing proka- otic and eukaryotic expression systems and the growing clinical demand for complex therapeutic proteins have created substantial interest in developing new expression systems for the production of therapeutic proteins. To that end, plants have emerged in the past decade as a suitable alternative to the current production systems, and today their potential for production of high quality, much safer and biologically active complex recombinant pharmaceutical proteins is largely documented. The chapters in this...
Altogether, the biochemical, technical and economic limitations on existing proka- otic and eukaryotic expression systems and the growing clinical dem...