Advanced probes and new fabrication techniques enable nanomaterials to pervade multiple disciplines, including physics, chemistry, engineering and biology. Na- materials have been extensively investigated with various kinds of morphologies (nanoparticles, nanowhiskers, nanorods, nanowires, nanoclusters, quantum dots, etc. ) and compositions (semiconductor, metal, polymer, etc. ). Impressive progress has been made on directed assembly and synthesis, structure, and property ch- acterization, as well as nanoscale device concepts and performance by a diverse group of experts. However, in spite of...
Advanced probes and new fabrication techniques enable nanomaterials to pervade multiple disciplines, including physics, chemistry, engineering and bio...
As part of the effort to increase the contribution of solar cells (photovoltaics) to our energy mix, this book addresses three main areas: making existing technology cheaper, promoting advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers. Leading scientists throughout the world create a fundamental platform for knowledge sharing that combines the physics, materials, and device architectures of high-efficiency solar cells. While providing a comprehensive introduction to the field, the book highlights directions for further research,...
As part of the effort to increase the contribution of solar cells (photovoltaics) to our energy mix, this book addresses three main areas: making exis...
For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. Nanoscale Thermoelectrics describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons....
For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role...
This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the...
This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, sing...
The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid...
The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast tele...
One-dimensional (1D) nanostructures, including nanowires, nanotubes and quantum wires, have been regarded as the most promising building blocks for nanoscale electronic and optoelectronic devices. This book presents exciting, state-of-the-art developments in synthesis and properties of 1D nanostructures with many kinds of morphologies and compositions as well as their considerable impact on spintronics, information storage, and the design of field-effect transistors.
One-dimensional (1D) nanostructures, including nanowires, nanotubes and quantum wires, have been regarded as the most promising building blocks for...
This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing.
The book will serve as a reference for anyone working with or planning to work with quantum dots.
This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostru...
Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. Quantum Dot Devices is appropriate for...
Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As th...
The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid...
The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast tele...
Bismuth-containing compounds comprise a relatively unexplored materials system that is expected to offer many unique and desirable optoelectronic, thermoelectric, and electronic properties for innovative device applications. This book serves as a platform for knowledge sharing and dissemination of the latest advances in novel areas of bismuth-containing compounds for materials and devices, and provides a comprehensive introduction to those new to this growing field. Coverage of bismides includes theoretical considerations, epitaxial growth, characterization, and materials properties...
Bismuth-containing compounds comprise a relatively unexplored materials system that is expected to offer many unique and desirable optoelectronic, ...