This timely text/reference presents a comprehensive overview of fault tolerance techniques for high-performance computing (HPC).
The text opens with a detailed introduction to the concepts of checkpoint protocols and scheduling algorithms, prediction, replication, silent error detection and correction, together with some application-specific techniques such as algorithm-based fault tolerance. Emphasis is placed on analytical performance models. This is then followed by a review of general-purpose techniques, including several checkpoint and rollback recovery protocols. Relevant...
This timely text/reference presents a comprehensive overview of fault tolerance techniques for high-performance computing (HPC).
This timely text/reference presents a comprehensive overview of fault tolerance techniques for high-performance computing (HPC).
The text opens with a detailed introduction to the concepts of checkpoint protocols and scheduling algorithms, prediction, replication, silent error detection and correction, together with some application-specific techniques such as algorithm-based fault tolerance. Emphasis is placed on analytical performance models. This is then followed by a review of general-purpose techniques, including several checkpoint and rollback recovery protocols. Relevant...
This timely text/reference presents a comprehensive overview of fault tolerance techniques for high-performance computing (HPC).