In this fascinating discussion of ancient mathematics, author Peter Rudman does not just chronicle the archeological record of what mathematics was done; he digs deeper into the more important question of why it was done in a particular way. Why did the Egyptians use a bizarre method of expressing fractions? Why did the Babylonians use an awkward number system based on multiples of 60? Rudman answers such intriguing questions, arguing that some mathematical thinking is universal and timeless. The similarity of the Babylonian and Mayan number systems, two cultures widely separated in time and...
In this fascinating discussion of ancient mathematics, author Peter Rudman does not just chronicle the archeological record of what mathematics was do...
A physicist explores the history of mathematics among the Babylonians and Egyptians, showing how their scribes in the era from 2000 to 1600 BCE used visualizations of plane geometric figures to invent geometric algebra, even solving problems that we now do by quadratic algebra. Rudman traces the evolution of mathematics from the metric geometric algebra of Babylon and Egypt--which used numeric quantities on diagrams as a means to work out problems--to the nonmetric geometric algebra of Euclid (ca. 300 BCE). From his analysis of Babylonian geometric algebra, the author formulates a "Babylonian...
A physicist explores the history of mathematics among the Babylonians and Egyptians, showing how their scribes in the era from 2000 to 1600 BCE used v...