Noncommutative geometry provides a powerful tool for regularizing quantum field theories in the form of fuzzy physics. Fuzzy physics maintains symmetries, has no fermion-doubling problem and represents topological features efficiently. These lecture notes provide a comprehensive introduction to the field. Starting with the construction of fuzzy spaces, using the concrete examples of the fuzzy sphere and fuzzy complex projective spaces, the book moves on to discuss the technology of star products on noncommutative R2d and on the fuzzy sphere. Scalar, spinor and gauge field theories as well as...
Noncommutative geometry provides a powerful tool for regularizing quantum field theories in the form of fuzzy physics. Fuzzy physics maintains symmetr...