Many different single-cell-based models have been developed and applied to biological and medical problems. Computational approaches used are Monte-Carlo simulations, energy minimisation techniques, volume conservation laws, solutions of the equations of motion for each individual cell or for each point on the cell membrane. They differ in the level of detail that defines the cell structure and subsequently in the number of individual cells that the model can incorporate.
This volume presents a collection of mathematical and computational single-cell-based models and their...
Many different single-cell-based models have been developed and applied to biological and medical problems. Computational approaches used are Monte...
This edited volume discusses the complexity of tumor microenvironments during cancer development, progression and treatment. Each chapter presents a different mathematical model designed to investigate the interactions between tumor cells and the surrounding stroma and stromal cells. The topics covered in this book include the quantitative image analysis of a tumor microenvironment, the microenvironmental barriers in oxygen and drug delivery to tumors, the development of tumor microenvironmental niches and sanctuaries, intravenous transport of the circulating tumor cells, the role of the...
This edited volume discusses the complexity of tumor microenvironments during cancer development, progression and treatment. Each chapter presents ...