This book captures the state-of-the-art in the field of Strong Stability Preserving (SSP) time stepping methods, which have significant advantages for the time evolution of partial differential equations describing a wide range of physical phenomena. This comprehensive book describes the development of SSP methods, explains the types of problems which require the use of these methods and demonstrates the efficiency of these methods using a variety of numerical examples. Another valuable feature of this book is that it collects the most useful SSP methods, both explicit and implicit, and...
This book captures the state-of-the-art in the field of Strong Stability Preserving (SSP) time stepping methods, which have significant advantages for...
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations.
This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.
Provides detailed, cutting-edge background explanations of existing algorithms and their...
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literatur...
Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations.