Spline functions are universally recognized as highly effective tools in approximation theory, computer-aided geometric design, image analysis, and numerical analysis. The theory of univariate splines is well known but this text is the first comprehensive treatment of the analogous bivariate theory. A detailed mathematical treatment of polynomial splines on triangulations is outlined, providing a basis for developing practical methods for using splines in numerous application areas. The detailed treatment of the Bernstein-Bezier representation of polynomials will provide a valuable source for...
Spline functions are universally recognized as highly effective tools in approximation theory, computer-aided geometric design, image analysis, and nu...