Focusing on grid computing and asynchronism, Parallel Iterative Algorithms explores the theoretical and practical aspects of parallel numerical algorithms. Each chapter contains a theoretical discussion of the topic, an algorithmic section that fully details implementation examples and specific algorithms, and an evaluation of the advantages and drawbacks of the algorithms. Several exercises also appear at the end of most chapters. The first two chapters introduce the general features of sequential iterative algorithms and their applications to numerical problems. The book then describes...
Focusing on grid computing and asynchronism, Parallel Iterative Algorithms explores the theoretical and practical aspects of parallel numerical algori...
Many of today s complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards.
Understand the Benefits of Using GPUs for Many Scientific Applications
Designing Scientific Applications on GPUs shows you how to use GPUs for applications in diverse scientific fields, from physics and mathematics to computer science. The book explains the methods necessary for designing or porting your...
Many of today s complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs...