The transfer function approach is widely used in classical control theory for its easy handling and physical meaning. Although the use of transfer functions is well-established for linear time-invariant systems, it is not suitable for non-stationary systems among which are sampled-data systems and processes with periodically varying coefficients. Computer-controlled continuous-time processes are a very important subset of periodic sampled-data systems which are not treatable using ordinary transfer functions.
Having established the ability of the parametric transfer function to...
The transfer function approach is widely used in classical control theory for its easy handling and physical meaning. Although the use of transfer ...
The transfer function approach is widely used in classical control theory for its easy handling and physical meaning. Although the use of transfer functions is well-established for linear time-invariant systems, it is not suitable for non-stationary systems among which are sampled-data systems and processes with periodically varying coefficients. Computer-controlled continuous-time processes are a very important subset of periodic sampled-data systems which are not treatable using ordinary transfer functions.
Having established the ability of the parametric transfer function to...
The transfer function approach is widely used in classical control theory for its easy handling and physical meaning. Although the use of transfer ...
This book introduces the reader to a novel method of mathematical description, analysis and design of digital control systems, which makes it possible to take into account, in the most complete form, specific features of interaction between continuous-time and discrete time processes.
This book introduces the reader to a novel method of mathematical description, analysis and design of digital control systems, which makes it possi...
Efim N. Rosenwasser Torsten Jeinsch Wolfgang Drewelow
This book is devoted to the problem of sampled-data control of finite-dimensional linear continuous periodic (FDLCP) objects. It fills a deficit in coverage of this important subject. The methods presented here are based on the parametric transfer matrix, which has proven successful in the study of sampled-data systems with linear time-invariant objects. The book shows that this concept can be successfully transferred to sampled-data systems with FDLCP objects. It is set out in five parts:· · an introduction to the frequency approach for the mathematical description...
This book is devoted to the problem of sampled-data control of finite-dimensional linear continuous periodic (FDLCP) objects. It fills a deficit in co...