A quadratic differential on aRiemann surface is locally represented by a ho lomorphic function element wh ich transforms like the square of a derivative under a conformal change of the parameter. More generally, one also allows for meromorphic function elements; however, in many considerations it is con venient to puncture the surface at the poles of the differential. One is then back at the holomorphic case. A quadratic differential defines, in a natural way, a field of line elements on the surface, with singularities at the critical points, i.e. the zeros and poles of the differential. The...
A quadratic differential on aRiemann surface is locally represented by a ho lomorphic function element wh ich transforms like the square of a derivati...
A quadratic differential on aRiemann surface is locally represented by a ho lomorphic function element wh ich transforms like the square of a derivative under a conformal change of the parameter. More generally, one also allows for meromorphic function elements; however, in many considerations it is con venient to puncture the surface at the poles of the differential. One is then back at the holomorphic case. A quadratic differential defines, in a natural way, a field of line elements on the surface, with singularities at the critical points, i.e. the zeros and poles of the differential. The...
A quadratic differential on aRiemann surface is locally represented by a ho lomorphic function element wh ich transforms like the square of a derivati...