This text examines the Atiyah-Singer theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary. The book presents a careful treatment of non-self-adjoint operators, asymptotics of the heat equation and variational formulas. It also introduces spectral geometry and provides a list of asymptotic formulas. The bibliography has been complied by Herbert...
This text examines the Atiyah-Singer theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation...
A great deal of progress has been made recently in the field of asymptotic formulas that arise in the theory of Dirac and Laplace type operators. Asymptotic Formulae in Spectral Geometry collects these results and computations into one book. Written by a leading pioneer in the field, it focuses on the functorial and special cases methods of computing asymptotic heat trace and heat content coefficients in the heat equation. It incorporates the work of many authors into the presentation, and includes a complete bibliography that serves as a roadmap to the literature on the subject. Geometers,...
A great deal of progress has been made recently in the field of asymptotic formulas that arise in the theory of Dirac and Laplace type operators. Asym...