If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1, F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n, F). The local Langlands Conjecture for GL(n) postulates the existence of a canonical bijection between such objects and n-dimensional representations of the Weil group, generalizing class field...
If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multipl...
If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1, F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n, F). The local Langlands Conjecture for GL(n) postulates the existence of a canonical bijection between such objects and n-dimensional representations of the Weil group, generalizing class field...
If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multipl...