This volume contains a collection of papers in Analytic and Elementary Number Theory in memory of Professor Paul Erdos, one of the greatest mathematicians of this century. Written by many leading researchers, the papers deal with the most recent advances in a wide variety of topics, including arithmetical functions, prime numbers, the Riemann zeta function, probabilistic number theory, properties of integer sequences, modular forms, partitions, and q-series. Audience: Researchers and students of number theory, analysis, combinatorics and modular forms will find this volume to...
This volume contains a collection of papers in Analytic and Elementary Number Theory in memory of Professor Paul Erdos, one of the greatest mathematic...
In this stimulating book, Elliott demonstrates a method and a motivating philosophy that combine to cohere a large part of analytic number theory, including the hitherto nebulous study of arithmetic functions. Besides its application, the book also illustrates a way of thinking mathematically: The author weaves historical background into the narrative, while variant proofs illustrate obstructions, false steps and the development of insight in a manner reminiscent of Euler. He demonstrates how to formulate theorems as well as how to construct their proofs. Elementary notions from functional...
In this stimulating book, Elliott demonstrates a method and a motivating philosophy that combine to cohere a large part of analytic number theory, inc...
This volume contains a collection of papers in Analytic and Elementary Number Theory in memory of Professor Paul Erdos, one of the greatest mathematicians of this century. Written by many leading researchers, the papers deal with the most recent advances in a wide variety of topics, including arithmetical functions, prime numbers, the Riemann zeta function, probabilistic number theory, properties of integer sequences, modular forms, partitions, and q-series. Audience: Researchers and students of number theory, analysis, combinatorics and modular forms will find this volume to...
This volume contains a collection of papers in Analytic and Elementary Number Theory in memory of Professor Paul Erdos, one of the greatest mathematic...
Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs....
Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = I. A value can be given f...