Gauss diagram invariants are isotopy invariants of oriented knots in- manifolds which are the product of a (not necessarily orientable) surface with an oriented line. The invariants are defined in a combinatorial way using knot diagrams, and they take values in free abelian groups generated by the first homology group of the surface or by the set of free homotopy classes of loops in the surface. There are three main results: 1. The construction of invariants of finite type for arbitrary knots in non orientable 3-manifolds. These invariants can distinguish homotopic knots with homeomorphic...
Gauss diagram invariants are isotopy invariants of oriented knots in- manifolds which are the product of a (not necessarily orientable) surface with a...
This book contains new numerical isotopy invariants for knots in the product of a surface (not necessarily orientable) with a line and for links in 3-space. These invariants, called Gauss diagram invariants, are defined in a combinatorial way using knot diagrams. The natural notion of global knots is introduced. Global knots generalize closed braids. If the surface is not the disc or the sphere then there are Gauss diagram invariants which distinguish knots that cannot be distinguished by quantum invariants. There are specific Gauss diagram invariants of finite type for global knots. These...
This book contains new numerical isotopy invariants for knots in the product of a surface (not necessarily orientable) with a line and for links in 3-...