One of the most natural representations for modelling spatial objects in computers is discrete representations in the form of a 2D square raster and a 3D cubic grid, since these are naturally obtained by segmenting sensor images. However, the main difficulty is that discrete representations are only approximations of the original objects, and can only be as accurate as the cell size allows. If digitisation is done by real sensor devices, then there is the additional difficulty of sensor distortion. To overcome this, digital shape features must be used that abstract from the inaccuracies of...
One of the most natural representations for modelling spatial objects in computers is discrete representations in the form of a 2D square raster and a...
One of the most natural representations for modelling spatial objects in computers is discrete representations in the form of a 2D square raster and a 3D cubic grid, since these are naturally obtained by segmenting sensor images. However, the main difficulty is that discrete representations are only approximations of the original objects, and can only be as accurate as the cell size allows. If digitisation is done by real sensor devices, then there is the additional difficulty of sensor distortion. To overcome this, digital shape features must be used that abstract from the inaccuracies of...
One of the most natural representations for modelling spatial objects in computers is discrete representations in the form of a 2D square raster and a...