This book considers some models described by means of partial dif ferential equations and boundary conditions with chaotic stochastic disturbance. In a framework of stochastic Partial Differential Equa tions an approach is suggested to generalize solutions of stochastic Boundary Problems. The main topic concerns probabilistic aspects with applications to well-known Random Fields models which are representative for the corresponding stochastic Sobolev spaces. {The term "stochastic" in general indicates involvement of appropriate random elements. ) It assumes certain knowledge in general...
This book considers some models described by means of partial dif ferential equations and boundary conditions with chaotic stochastic disturbance. In ...
Probability Theory, Theory of Random Processes and Mathematical Statistics are important areas of modern mathematics and its applications. They develop rigorous models for a proper treatment for various 'random' phenomena which we encounter in the real world. They provide us with numerous tools for an analysis, prediction and, ultimately, control of random phenomena. Statistics itself helps with choice of a proper mathematical model (e.g., by estimation of unknown parameters) on the basis of statistical data collected by observations. This volume is intended to be a concise textbook for a...
Probability Theory, Theory of Random Processes and Mathematical Statistics are important areas of modern mathematics and its applications. They develo...
The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a "random process segment" and of finding effective formulas for densities of the equiva- lent distributions. Our second problem is to describe the classes of spectral measures corresponding in some sense to regular stationary processes (in par- ticular, satisfying the well-known "strong mixing condition") as well as to describe the subclasses associated with "mixing rate." The...
The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual ...
In this book we study Markov random functions of several variables. What is traditionally meant by the Markov property for a random process (a random function of one time variable) is connected to the concept of the phase state of the process and refers to the independence of the behavior of the process in the future from its behavior in the past, given knowledge of its state at the present moment. Extension to a generalized random process immediately raises nontrivial questions about the definition of a suitable" phase state," so that given the state, future behavior does not depend on past...
In this book we study Markov random functions of several variables. What is traditionally meant by the Markov property for a random process (a random ...