Non-Additive Measure and Integral is the first systematic approach to the subject. Much of the additive theory (convergence theorems, Lebesgue spaces, representation theorems) is generalized, at least for submodular measures which are characterized by having a subadditive integral. The theory is of interest for applications to economic decision theory (decisions under risk and uncertainty), to statistics (including belief functions, fuzzy measures) to cooperative game theory, artificial intelligence, insurance, etc. Non-Additive Measure and Integral collects the...
Non-Additive Measure and Integral is the first systematic approach to the subject. Much of the additive theory (convergence theorems, Lebesgu...
Non-Additive Measure and Integral is the first systematic approach to the subject. Much of the additive theory (convergence theorems, Lebesgue spaces, representation theorems) is generalized, at least for submodular measures which are characterized by having a subadditive integral. The theory is of interest for applications to economic decision theory (decisions under risk and uncertainty), to statistics (including belief functions, fuzzy measures) to cooperative game theory, artificial intelligence, insurance, etc. Non-Additive Measure and Integral collects the...
Non-Additive Measure and Integral is the first systematic approach to the subject. Much of the additive theory (convergence theorems, Lebesgu...