Current-Mode digital circuits have been extensively analyzed and used since the early days of digital ICs. In particular, bipolar Current-Mode digital circuits emerged as an approach to realize digital circuits with the highest speed. Together with its speed performance, CMOS Current-Mode logic has been rediscovered to allow logic gates implementations which, in contrast to classical VLSI CMOS digital circuits, have the feature of low noise level generation. Thus, CMOS Current-Mode gates can be efficiently used inside analog and mixed-signal ICs, which require a low noise silicon environment....
Current-Mode digital circuits have been extensively analyzed and used since the early days of digital ICs. In particular, bipolar Current-Mode digital...
This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design...
This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-d...
Current-Mode digital circuits have been extensively analyzed and used since the early days of digital ICs. In particular, bipolar Current-Mode digital circuits emerged as an approach to realize digital circuits with the highest speed. Together with its speed performance, CMOS Current-Mode logic has been rediscovered to allow logic gates implementations which, in contrast to classical VLSI CMOS digital circuits, have the feature of low noise level generation. Thus, CMOS Current-Mode gates can be efficiently used inside analog and mixed-signal ICs, which require a low noise silicon environment....
Current-Mode digital circuits have been extensively analyzed and used since the early days of digital ICs. In particular, bipolar Current-Mode digital...
This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design...
This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-d...
This book offers the first comprehensive view on integrated circuit and system design for the Internet of Things (IoT), and in particular for the tiny nodes at its edge. The authors provide a fresh perspective on how the IoT will evolve based on recent and foreseeable trends in the semiconductor industry, highlighting the key challenges, as well as the opportunities for circuit and system innovation to address them. This book describes what the IoT really means from the design point of view, and how the constraints imposed by applications translate into integrated circuit requirements and...
This book offers the first comprehensive view on integrated circuit and system design for the Internet of Things (IoT), and in particular for the t...