During the past decade the theoretical physics community has learned how to evaluate accurately polarizabilities and susceptibilities for many-electron systems such as atoms, solids, and liquids. The most accurate numerical technique employs a method often called the Time-Dependent Local Density Approximation, which is abbreviated TDLDA. The present volume is a review of recent research on the theory of po larizabilities and susceptibilities. Both authors have been doing these cal culations. However, this review surveys the entire field, summarizing the research of many contributors. The...
During the past decade the theoretical physics community has learned how to evaluate accurately polarizabilities and susceptibilities for many-electro...
During the past decade the theoretical physics community has learned how to evaluate accurately polarizabilities and susceptibilities for many-electron systems such as atoms, solids, and liquids. The most accurate numerical technique employs a method often called the Time-Dependent Local Density Approximation, which is abbreviated TDLDA. The present volume is a review of recent research on the theory of po- larizabilities and susceptibilities. Both authors have been doing these cal- culations. However, this review surveys the entire field, summarizing the research of many contributors. The...
During the past decade the theoretical physics community has learned how to evaluate accurately polarizabilities and susceptibilities for many-electro...