Einstein's general theory of relativity is introduced in this advanced undergraduate and beginning graduate level textbook. Topics include special relativity, in the formalism of Minkowski's four-dimensional space-time, the principle of equivalence, Riemannian geometry and tensor analysis, Einstein field equation, as well as many modern cosmological subjects, from primordial inflation and cosmic microwave anisotropy to the dark energy that propels an accelerating universe. The author presents the subject with an emphasis on physical examples and simple applications without the full tensor...
Einstein's general theory of relativity is introduced in this advanced undergraduate and beginning graduate level textbook. Topics include special rel...
This advanced undergraduate text introduces Einstein's general theory of relativity. The topics covered include geometric formulation of special relativity, the principle of equivalence, Einstein's field equation and its spherical-symmetric solution, as well as cosmology. An emphasis is placed on physical examples and simple applications without the full tensor apparatus. It begins by examining the physics of the equivalence principle and looks at how it inspired Einstein's idea of curved spacetime as the gravitational field. At a more mathematically accessible level, it provides a metric...
This advanced undergraduate text introduces Einstein's general theory of relativity. The topics covered include geometric formulation of special relat...