The fascinating ?eld of shape optimization problems has received a lot of attention in recent years, particularly in relation to a number of applications in physics and engineering that require a focus on shapes instead of parameters or functions. The goal of these applications is to deform and modify the admissible shapes in order to comply with a given cost function that needs to be optimized. In this respect the problems are both classical (as the isoperimetric problem and the Newton problem of the ideal aerodynamical shape show) and modern (re?ecting the many results obtained in the last...
The fascinating ?eld of shape optimization problems has received a lot of attention in recent years, particularly in relation to a number of applicati...
The study of shape optimization problems is a very wide field, both classical, as the isoperimetric problem and Newton problem of the best aerodynamical shape show, and modern, for all the recent results obtained in the last two, three decades. The fascinating feature is that the competing objects are shapes, i.e. domains of Rn, instead of functions, as usually occurs in problems of calculus of variations. This constraint often produces additional difficulties that lead to a lack of existence of a solution and the introduction of suitable relaxed formulations of the problem. However, in a few...
The study of shape optimization problems is a very wide field, both classical, as the isoperimetric problem and Newton problem of the best aerodynamic...