Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. Several topics are addressed, including parametric models, semiparametric models based on prior processes, proportional and non-proportional hazards models, frailty models, cure rate models, model selection and comparison, joint models for longitudinal and survival data, models with time varying covariates, missing covariate data, design and monitoring of clinical trials, accelerated...
Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provi...
Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time.
With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range...
Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics ...
Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv- ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants,...
Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major ...