Survival Analysis for Bivariate Truncated Data provides readers with a comprehensive review on the existing works on survival analysis for truncated data, mainly focusing on the estimation of univariate and bivariate survival function. The most distinguishing feature of survival data is known as censoring, which occurs when the survival time can only be exactly observed within certain time intervals. A second feature is truncation, which is often deliberate and usually due to selection bias in the study design.
Truncation presents itself in different ways. For example, left...
Survival Analysis for Bivariate Truncated Data provides readers with a comprehensive review on the existing works on survival analysis for t...