Decoupling theory provides a general framework for analyzing problems involving dependent random variables as if they were independent. It was born in the early eighties as a natural continuation of martingale theory and has acquired a life of its own due to vigorous development and wide applicability. The authors provide a friendly and systematic introduction to the theory and applications of decoupling. The book begins with a chapter on sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments which are later used to develop and interpret...
Decoupling theory provides a general framework for analyzing problems involving dependent random variables as if they were independent. It was born in...
A friendly and systematic introduction to the theory and applications. The book begins with the sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments, which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies to randomly stopped processes and unbiased estimation. The authors then proceed with the theory of decoupling in full generality, paying special attention to comparison and interplay between martingale and decoupling theory, and to applications. These include limit theorems,...
A friendly and systematic introduction to the theory and applications. The book begins with the sums of independent random variables and vectors, with...