The aim of this book is to bring together classical and recent developments in the particular field of Newtonian flow at low Reynolds numbers. The methods are developed from first principles, alternative formulations are compared, a variety of configurations are addressed, the proper mathematical framework is discussed in the context of functional analysis and integral-equation-theory, and procedures of numerical solution in the context of the boundary element method are introduced. The text contains a fair amount of original material pertaining, in particular, to the properties and explicit...
The aim of this book is to bring together classical and recent developments in the particular field of Newtonian flow at low Reynolds numbers. The met...
This book presents a thorough grounding in the techniques of modeling, and proceeds to explore a range of continuum models from an impressive array of disciplines, including biology, chemical engineering, fluid and solid mechanics, geophysics, medicine, and physics. It assumes only a basic mathematical grounding in calculus and analysis and will provide a wealth of examples for students of mathematics, engineering, and the range of applied sciences.
This book presents a thorough grounding in the techniques of modeling, and proceeds to explore a range of continuum models from an impressive array of...
A good working knowledge of symmetry methods is very valuable for those working with mathematical models. This book is a straightforward introduction to the subject for applied mathematicians, physicists, and engineers. The informal presentation uses many worked examples to illustrate the major symmetry methods. Written at a level suitable for postgraduates and advanced undergraduates, the text will enable readers to master the main techniques quickly and easily. The book contains some methods not previously published in a text, including those methods for obtaining discrete symmetries and...
A good working knowledge of symmetry methods is very valuable for those working with mathematical models. This book is a straightforward introduction ...
A good working knowledge of symmetry methods is very valuable for those working with mathematical models. This book is a straightforward introduction to the subject for applied mathematicians, physicists, and engineers. The informal presentation uses many worked examples to illustrate the major symmetry methods. Written at a level suitable for postgraduates and advanced undergraduates, the text will enable readers to master the main techniques quickly and easily. The book contains some methods not previously published in a text, including those methods for obtaining discrete symmetries and...
A good working knowledge of symmetry methods is very valuable for those working with mathematical models. This book is a straightforward introduction ...
This comprehensive introduction to the mathematical theory of vorticity and incompressible flow begins with the elementary introductory material and leads into current research topics. While the book centers on mathematical theory, many parts also showcase the interaction among rigorous mathematical theory, numerical, asymptotic, and qualitative simplified modeling, and physical phenomena. The first half forms an introductory graduate course on vorticity and incompressible flow. The second half comprises a modern applied mathematics graduate course on the weak solution theory for...
This comprehensive introduction to the mathematical theory of vorticity and incompressible flow begins with the elementary introductory material and l...
This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the...
This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equa...
Acoustics of Fluid-Structure Interactions addresses an increasingly important branch of fluid mechanics--the absorption of noise and vibration by fluid flow. This subject, which offers numerous challenges to conventional areas of acoustics, is of growing concern in places where the environment is adversely affected by sound. Howe presents useful background material on fluid mechanics and the elementary concepts of classical acoustics and structural vibrations. Using examples, many of which include complete worked solutions, he vividly illustrates the theoretical concepts involved. He provides...
Acoustics of Fluid-Structure Interactions addresses an increasingly important branch of fluid mechanics--the absorption of noise and vibration by flui...
This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the...
This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equa...
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are...
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are ofte...
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are...
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are ofte...