PCT, Spin and Statistics, and All That is the classic summary of and introduction to the achievements of Axiomatic Quantum Field Theory. This theory gives precise mathematical responses to questions like: What is a quantized field? What are the physically indispensable attributes of a quantized field? Furthermore, Axiomatic Field Theory shows that a number of physically important predictions of quantum field theory are mathematical consequences of the axioms. Here Raymond Streater and Arthur Wightman treat only results that can be rigorously proved, and these are presented in...
PCT, Spin and Statistics, and All That is the classic summary of and introduction to the achievements of Axiomatic Quantum Field Theory...
This book deals with a selection of research topics in theoretical physics that have (almost) been proven to be a dead-end or continue at least to be highly controversial. Nevertheless, small but dedicated research communities continue to work on these issues. In a series of essays this book describes their work and struggle as well as the chances of any breakthrough in these areas. It is written as both an entertainment and serious study.
This book deals with a selection of research topics in theoretical physics that have (almost) been proven to be a dead-end or continue at least to ...
How can one construct dynamical systems obeying the first and second laws of thermodynamics: mean energy is conserved and entropy increases with time? This book answers the question for classical probability (Part I) and quantum probability (Part II). A novel feature is the introduction of heat particles which supply thermal noise and represent the kinetic energy of the molecules. When applied to chemical reactions, the theory leads to the usual nonlinear reaction-diffusion equations as well as modifications of them. These can exhibit oscillations, or can converge to equilibrium.In this...
How can one construct dynamical systems obeying the first and second laws of thermodynamics: mean energy is conserved and entropy increases with time?...
How can one construct dynamical systems obeying the first and second laws of thermodynamics: mean energy is conserved and entropy increases with time? This book answers the question for classical probability (Part I) and quantum probability (Part II). A novel feature is the introduction of heat particles which supply thermal noise and represent the kinetic energy of the molecules. When applied to chemical reactions, the theory leads to the usual nonlinear reaction-diffusion equations as well as modifications of them. These can exhibit oscillations, or can converge to equilibrium.In this...
How can one construct dynamical systems obeying the first and second laws of thermodynamics: mean energy is conserved and entropy increases with time?...