Data mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability.
Soft Computing for Knowledge Discovery and Data Mining introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining. This edited volume by highly regarded authors, includes several contributors of the 2005, Data Mining...
Data mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely impor...
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery from Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable...
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of K...
Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications.
The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic...
Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since...
Data mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability.
Soft Computing for Knowledge Discovery and Data Mining introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining. This edited volume by highly regarded authors, includes several contributors of the 2005, Data Mining...
Data mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely impor...
SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 100 pages (approximately 20,000- 40,000 words), the series covers a range of content from professional to academic. Briefs allow authors to present their ideas and readers to absorb them with minimal time investment. As part of Springer's eBook collection, SpringBriefs are published to millions of users worldwide. Information/Data Leakage poses a serious threat to companies and organizations, as the number of leakage incidents and...
SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volum...
Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced.This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new...
Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring larg...
This second edition of a well-received text, with 20 new chapters, presents a coherent and unified repository of recommender systems' major concepts, theories, methodologies, trends, and challenges. A variety of real-world applications and detailed case studies are included. In addition to wholesale revision of the existing chapters, this edition includes new topics including: decision making and recommender systems, reciprocal recommender systems, recommender systems in social networks, mobile recommender systems, explanations for recommender systems, music recommender systems, cross-domain...
This second edition of a well-received text, with 20 new chapters, presents a coherent and unified repository of recommender systems' major concepts, ...
This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in databases. It first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. It also gives in-depth descriptions of data mining applications in various interdisciplinary industries.
This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in da...
This third edition handbook describes in detail the classical methods as well as extensions and novel approaches that were more recently introduced within this field. It consists of five parts: general recommendation techniques, special recommendation techniques, value and impact of recommender systems, human computer interaction, and applications. The first part presents the most popular and fundamental techniques currently used for building recommender systems, such as collaborative filtering, semantic-based methods, recommender systems based on implicit feedback, neural networks and...
This third edition handbook describes in detail the classical methods as well as extensions and novel approaches that were more recently introduced wi...