Systems biology and computational biology have recently become prominent areas of research in the biomedical community, especially in the area of cell biology. Given that much information on genes and their protein products has become available, the big question is how the individual components interact and work together, and how this determines the functioning of cells, organs, and organisms. Long before the popularity of systems biology in biomedicine, however, such approaches have been used successfully in a di?erent area of biology: population ecology. Research in the area of population...
Systems biology and computational biology have recently become prominent areas of research in the biomedical community, especially in the area of cell...
Systems biology and computational biology have recently become prominent areas of research in the biomedical community, especially in the area of cell biology. Given that much information on genes and their protein products has become available, the big question is how the individual components interact and work together, and how this determines the functioning of cells, organs, and organisms. Long before the popularity of systems biology in biomedicine, however, such approaches have been used successfully in a di?erent area of biology: population ecology. Research in the area of population...
Systems biology and computational biology have recently become prominent areas of research in the biomedical community, especially in the area of cell...
Countless medical researchers over the past century have been occupied by the search for a cure of cancer. So far, they have developed and implemented a wide range of treatment techniques, including surgery, chemo- and radiotherapy, antiangiogenic drugs, small molecule inhibitors, and oncolytic viruses. However, patterns of these treatments' effectiveness remain largely unclear, and a better understanding of how cancer therapies work has become a key research goal. Cancer Treatment in Silico provides the first in-depth study of approaching this understanding by modeling cancer...
Countless medical researchers over the past century have been occupied by the search for a cure of cancer. So far, they have developed and implemen...
The book aims to provide an introduction to mathematical models that describe the dynamics of tumor growth and the evolution of tumor cells. It can be used as a textbook for advanced undergraduate or graduate courses, and also serves as a reference book for researchers. The book has a strong evolutionary component and reflects the viewpoint that cancer can be understood rationally through a combination of mathematical and biological tools. It can be used both by mathematicians and biologists. Mathematically, the book starts with relatively simple ordinary differential equation models, and...
The book aims to provide an introduction to mathematical models that describe the dynamics of tumor growth and the evolution of tumor cells. It can be...
Countless medical researchers over the past century have been occupied by the search for a cure of cancer. So far, they have developed and implemented a wide range of treatment techniques, including surgery, chemo- and radiotherapy, antiangiogenic drugs, small molecule inhibitors, and oncolytic viruses. However, patterns of these treatments' effectiveness remain largely unclear, and a better understanding of how cancer therapies work has become a key research goal. Cancer Treatment in Silico provides the first in-depth study of approaching this understanding by modeling cancer...
Countless medical researchers over the past century have been occupied by the search for a cure of cancer. So far, they have developed and implemen...