This is a comprehensive treatment of Minkowski geometry. The author begins by describing the fundamental metric properties and the topological properties of existence of Minkowski space. This is followed by a treatment of two-dimensional spaces and characterizations of Euclidean space among normed spaces. The central three chapters present the theory of area and volume in normed spaces--a fascinating geometrical interplay among the various roles of the ball in Euclidean space. Later chapters deal with trigonometry and differential geometry in Minkowski spaces. The book ends with a brief look...
This is a comprehensive treatment of Minkowski geometry. The author begins by describing the fundamental metric properties and the topological propert...
Algebraists have studied noncommutative fields (also called skew fields or division rings) less thoroughly than their commutative counterparts. Most existing accounts have been confined to division algebras, i.e. skew fields that are finite dimensional over their center. This work offers the first comprehensive account of skew fields. It is based on the author's LMS Lecture Note Volume "Skew Field Constructions." The axiomatic foundation and a precise description of the embedding problem precedes an account of algebraic and topological construction methods. The author presents his general...
Algebraists have studied noncommutative fields (also called skew fields or division rings) less thoroughly than their commutative counterparts. Most e...
The book is devoted to the study of classical combinatorial structures such as random graphs, permutations, and systems of random linear equations in finite fields. The author shows how the application of the generalized scheme of allocation in the study of random graphs and permutations reduces the combinatorial problems to classical problems of probability theory on the summation of independent random variables. He offers recent research by Russian mathematicians, including a discussion of equations containing an unknown permutation, and the first English-language presentation of techniques...
The book is devoted to the study of classical combinatorial structures such as random graphs, permutations, and systems of random linear equations in ...
A Handbook of Categorical Algebra, in three volumes, is a detailed account of everything a mathematician needs to know about category theory. Each volume is self-contained and is accessible to graduate students with a good background in mathematics. Volume 1 is devoted to general concepts. After introducing the terminology and proving the fundamental results concerning limits, adjoint functors and Kan extensions, the categories of fractions are studied in detail; special consideration is paid to the case of localizations. The remainder of the first volume studies various "refinements" of the...
A Handbook of Categorical Algebra, in three volumes, is a detailed account of everything a mathematician needs to know about category theory. Each vol...
The second volume, which assumes familiarity with the material in the first, introduces important classes of categories that have played a fundamental role in the subject's development and applications. In addition, after several chapters discussing specific categories, the book develops all the major concepts concerning Benabou's ideas of fibered categories.
The second volume, which assumes familiarity with the material in the first, introduces important classes of categories that have played a fundamental...
This third volume turns to topos theory and the idea of sheaves. The theory of locales is considered first, and Grothendieck toposes are introduced. Notions of sketchability and accessible categories are discussed, and an axiomatic generalization of the category of sheaves is given.
This third volume turns to topos theory and the idea of sheaves. The theory of locales is considered first, and Grothendieck toposes are introduced. N...
This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic with emphasis on independence proofs and lower bound proofs. The author discusses the deep connections between logic and complexity theory and lists a number of intriguing open problems. An introduction to the basics of logic and complexity is followed by discussion of important results in propositional proof systems and systems of bounded arithmetic. Then more advanced topics are treated, including polynomial simulations and conservativity results, various witnessing...
This book presents an up-to-date, unified treatment of research in bounded arithmetic and complexity of propositional logic with emphasis on independe...
Lattice theory evolved as part of algebra in the nineteenth century through the work of Boole, Peirce and Schroder, and in the first half of the twentieth century through the work of Dedekind, Birkhoff, Ore, von Neumann, Mac Lane, Wilcox, Dilworth, and others. In Semimodular Lattices, Manfred Stern uses successive generalizations of distributive and modular lattices to outline the development of semimodular lattices from Boolean algebras. He focuses on the important theory of semimodularity, its many ramifications, and its applications in discrete mathematics, combinatorics, and algebra. The...
Lattice theory evolved as part of algebra in the nineteenth century through the work of Boole, Peirce and Schroder, and in the first half of the twent...
This is the first comprehensive exposition of the application of spherical harmonics to prove geometric results. The author presents all the necessary tools from classical theory of spherical harmonics with full proofs. Groemer uses these tools to prove geometric inequalities, uniqueness results for projections and intersection by planes or half-spaces, stability results, and characterizations of convex bodies of a particular type, such as rotors in convex polytopes. Results arising from these analytical techniques have proved useful in many applications, particularly those related to...
This is the first comprehensive exposition of the application of spherical harmonics to prove geometric results. The author presents all the necessary...
This book provides an integrated treatment of the theory of nonnegative matrices and some related classes of positive matrices, concentrating on connections with game theory, combinatorics, inequalities, optimization and mathematical economics. The authors have chosen the wide variety of applications, which include price fixing, scheduling, and the fair division problem, both for their elegant mathematical content and for their accessibility to students with minimal preparation. They present many new results in matrix theory for the first time in book form, while they present more standard...
This book provides an integrated treatment of the theory of nonnegative matrices and some related classes of positive matrices, concentrating on conne...