This book presents a short, fairly simple course on the basic theory of phase transitions and its modern applications. In physics, these applications include such modern developments as Bose-Einstein condensation of atoms, high temperature superconductivity, and vortices in superconductors, while in other fields they include small world phenomena and scale-free systems (such as stock markets and the Internet). The advantage of treating all these topics together lies in showing their connection with one another and with the general theory of phase transitions.
This book presents a short, fairly simple course on the basic theory of phase transitions and its modern applications. In physics, these applications ...
This book contains comprehensive descriptions of stochastic processes described by underdamped and overdamped oscillator equations with additive and multiplicative random forcing. The latter is associated with random frequency or random damping. The coverage includes descriptions of various new phenomena discovered in the last hundred years since the explanation of Brownian motion by Einstein, Smoluchovski and Langevin, such as the shift of stable points, noise-enhanced stability, stochastic resonance, resonant activation, and stabilization of metastable states. In addition to many...
This book contains comprehensive descriptions of stochastic processes described by underdamped and overdamped oscillator equations with additive and m...
Chemical reactions at high pressures are widely used in modern technology (supercritical extraction is an example). On the other hand, critical phenomena is the more advanced field in statistical mechanics. There are thousands of theoretical and experimental articles published by physicists, chemists, biologists, chemical engineers and material scientists, but, to our knowledge, there are no books which link these two phenomena together. This book sums up the results of 222 published articles, both theoretical and experimental, which will be of great benefit to students and all researchers...
Chemical reactions at high pressures are widely used in modern technology (supercritical extraction is an example). On the other hand, critical phenom...
Covers the traditional parts of quantum mechanics: semiclassical theories of radiation and scattering, a number of advanced problems: Feynman diagrams and relativistic quantum mechanics and a collection of modern items: superfluidity and high-temperature superconductivity.
Covers the traditional parts of quantum mechanics: semiclassical theories of radiation and scattering, a number of advanced problems: Feynman diagrams...
The properties of the harmonic oscillator with random frequency or/and random damping formed the content of the first edition. The second edition includes hundreds of publications on this subject since 2005. The noisy oscillator continues to be the subject of intensive studies in physics, chemistry, biology, and social sciences. The new and the latest type of a stochastic oscillator has also been considered, namely, an oscillator with random mass. Such model describes, among other phenomena, Brownian motion with adhesion, where the molecules of the surrounding medium not only randomly...
The properties of the harmonic oscillator with random frequency or/and random damping formed the content of the first edition. The second edition incl...
This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions i.e. the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reaction and moving systems. The book covers a close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the...
This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theo...
Stochastic descriptions of a harmonic oscillator can be obtained by adding additive noise, or/and three types of multiplicative noise: random frequency, random damping and random mass. The first three types of noise were intensively studied in many published articles. In this book the fourth case, that of random mass, is considered in the context of the harmonic oscillator and its immediate nonlinear generalization — the pendulum. To our knowledge it is the first book fully dedicated to this problem.Two interrelated methods, the Langevin equation and the Fokker-Planck equations, as...
Stochastic descriptions of a harmonic oscillator can be obtained by adding additive noise, or/and three types of multiplicative noise: random frequenc...