The modern electron microscope, as a result of recent revolutionary developments and many evolutionary ones, now yields a wealth of quantitative knowledge pertaining to structure, dynamics, and function barely matched by any other single scientific instrument. It is also poised to contribute much new spatially-resolved and time-resolved insights of central importance in the exploration of most aspects of condensed matter, ranging from the physical to the biological sciences.Whereas in all conventional EM methods, imaging, diffraction, and chemical analyses have been conducted in a static...
The modern electron microscope, as a result of recent revolutionary developments and many evolutionary ones, now yields a wealth of quantitative knowl...
The modern electron microscope, as a result of recent revolutionary developments and many evolutionary ones, now yields a wealth of quantitative knowledge pertaining to structure, dynamics, and function barely matched by any other single scientific instrument. It is also poised to contribute much new spatially-resolved and time-resolved insights of central importance in the exploration of most aspects of condensed matter, ranging from the physical to the biological sciences.Whereas in all conventional EM methods, imaging, diffraction, and chemical analyses have been conducted in a static...
The modern electron microscope, as a result of recent revolutionary developments and many evolutionary ones, now yields a wealth of quantitative knowl...