This volume opens up new perspectives on the physics of the Earth's interior for graduate students and researchers working in the fields of geophysics and geodesy. It looks at our planet in an integrated fashion, linking the physics of its interior to the geophysical and geodetic techniques that record, over a broad spectrum of spatial wavelengths, the ongoing modifications in the shape and gravity field of the planet. Basic issues related to the rheological properties of the Earth's mantle and to its slow deformation will be understood, in both mathematical and physical terms, within the...
This volume opens up new perspectives on the physics of the Earth's interior for graduate students and researchers working in the fields of geophysics...
This volume opens up new perspectives on the physics of the Earth's interior for graduate students and researchers working in the fields of geophysics and geodesy. It looks at our planet in an integrated fashion, linking the physics of its interior to the geophysical and geodetic techniques that record, over a broad spectrum of spatial wavelengths, the ongoing modifications in the shape and gravity field of the planet. Basic issues related to the rheological properties of the Earth's mantle and to its slow deformation will be understood, in both mathematical and physical terms, within the...
This volume opens up new perspectives on the physics of the Earth's interior for graduate students and researchers working in the fields of geophysics...
The new Chapter 9 of this Second Edition on deformation and stresses of icy moons enlarges the applications of the book to Planetology, dealing with the additional complications in the theory of viscoelastic relaxation introduced by the shallow low-viscosity zones and inviscid water layers of the moons of Jupiter and Saturn.
The new Chapter 9 of this Second Edition on deformation and stresses of icy moons enlarges the applications of the book to Planetology, dealing with t...