The four chapters of this volume, written by prominent workers in the field of adaptive processing and linear prediction, address a variety of problems, ranging from adaptive source coding to autoregressive spectral estimation. The first chapter, by T.C. Butash and L.D. Davisson, formulates the performance of an adaptive linear predictor in a series of theorems, with and without the Gaussian assumption, under the hypothesis that its coefficients are derived from either the (single) observation sequence to be predicted (dependent case) or a second, statistically independent realisation...
The four chapters of this volume, written by prominent workers in the field of adaptive processing and linear prediction, address a variety of problem...