Incorporated in this volume are the first two books in Mukai's series on Moduli Theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. Researchers and graduate students working in areas ranging from Donaldson or Seiberg-Witten invariants to more concrete problems such as vector bundles on curves will find this to be a valuable resource. Among other things this volume includes an improved presentation of the classical foundations of...
Incorporated in this volume are the first two books in Mukai's series on Moduli Theory. The notion of a moduli space is central to geometry. However, ...