Disease mapping involves the analysis of geo-referenced disease incidence data and has many applications, for example within resource allocation, cluster alarm analysis, and ecological studies. There is a real need amongst public health workers for simpler and more efficient tools for the analysis of geo-referenced disease incidence data. Bayesian and multilevel methods provide the required efficiency, and with the emergence of software packages - such as WinBUGS and MLwiN - are now easy to implement in practice.
Provides an introduction to Bayesian and multilevel modelling in...
Disease mapping involves the analysis of geo-referenced disease incidence data and has many applications, for example within resource allocation, clus...