Concerned with two fundamental problems in low-dimensional topology, the D(2)-problem and the realization problem, F.E.A. Johnson develops general methods and provides complete solutions in some instances. His book is suitable for graduate students wanting to learn low-dimensional homotopy theory as well as established researchers in the field.
Concerned with two fundamental problems in low-dimensional topology, the D(2)-problem and the realization problem, F.E.A. Johnson develops general met...
The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood.
Syzygies and Homotopy Theory explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of Hilbert's method of syzygies in the context of non-simply connected homotopy theory. The first part...
The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researche...