The current research into solitons and their use in fiber optic communications is very important to the future of communications. Since the advent of computer networking and high speed data transmission technology people have been striving to develop faster and more reliable communications media. Optical pulses tend to broaden over relatively short distances due to dispersion, but solitons on the other hand are not as susceptible to the effects of dispersion, and although they are subject to losses due to attenuation they can be amplified without being received and re-transmitted. This...
The current research into solitons and their use in fiber optic communications is very important to the future of communications. Since the advent of ...
Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest.
This book focuses on nonlinear optical phenomena...
Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light...
Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest.
This book focuses on nonlinear optical phenomena...
Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light...
Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This...
Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index an...
Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing.
Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index an...