The scale that concerns the practitioner in mechanics is usually qualified as macroscopic. Indeed, applications are rarely much below the human scale, and in order to be relevant models must be constructed on a similar scale, several orders of magnitude greater than the objects that are normally attributed to the physicist's sphere of interest. The mechanicist is therefore aware of the limits of these models, no matter how elegant their mathematical formulation may be, when the time comes far experimental validation. The mechanicist has a deep concern for the microscopic phenomena at the...
The scale that concerns the practitioner in mechanics is usually qualified as macroscopic. Indeed, applications are rarely much below the human scale,...
A synthetic presentation of the theory of yield design is illustrated by examples such as the stability analysis of reinforced soil structures and the resistance of long fiber reinforced composite materials. The classical limit analysis theory when standard elastic perfectly plastic behaviour can be assumed yields a more precise assessment of the global bearing capacities of structures and makes optimal limit design possible. Structural optimal design is also studied with respect to eigenvalues as well as Structural Topology and Design Optimization.
A synthetic presentation of the theory of yield design is illustrated by examples such as the stability analysis of reinforced soil structures and the...