In the summer of 1991 the Department of Mathematics and Statistics of the Universite de Montreal was fortunate to host the NATO Advanced Study Institute "Algebras and Orders" as its 30th Seminaire de mathematiques superieures (SMS), a summer school with a long tradition and well-established reputation. This book contains the contributions of the invited speakers. Universal algebra- which established itself only in the 1930's- grew from traditional algebra (e.g., groups, modules, rings and lattices) and logic (e.g., propositional calculus, model theory and the theory of relations). It started...
In the summer of 1991 the Department of Mathematics and Statistics of the Universite de Montreal was fortunate to host the NATO Advanced Study Institu...
The papers collected in this volume are contributions to the 33rd session of the Seminaire de Mathematiques Superieures (SMS) on "Topological Methods in Differential Equations and Inclusions." This session of the SMS took place at the Universite de Montreal in July 1994 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together a considerable group of young researchers from various parts of the world and to present to them coherent surveys of some of the most recent advances in this area of Nonlinear Analysis. During the meeting 89 mathematicians from 20 countries...
The papers collected in this volume are contributions to the 33rd session of the Seminaire de Mathematiques Superieures (SMS) on "Topological Methods ...
The last decade has seen two parallel developments, one in computer science, the other in mathematics, both dealing with the same kind of combinatorial structures: networks with strong symmetry properties or, in graph-theoretical language, vertex-transitive graphs, in particular their prototypical examples, Cayley graphs. In the design of large interconnection networks it was realised that many of the most fre quently used models for such networks are Cayley graphs of various well-known groups. This has spawned a considerable amount of activity in the study of the combinatorial properties of...
The last decade has seen two parallel developments, one in computer science, the other in mathematics, both dealing with the same kind of combinatoria...
Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present lectures show that this beautiful theory is still growing. An important tool is complex approximation and some of the lectures are devoted to this topic. Harmonic approximation started to flourish astonishingly rapidly towards the end of the 20th century, and the latest development, including approximation manifolds, are presented here.
Since de Branges confirmed the Bieberbach conjecture, the primary problem in geometric function theory is...
Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present le...
Yulij Ilyashenko Christiane Rousseau Gert Sabidussi
A number of recent significant developments in the theory of differential equations are presented in an elementary fashion, many of which are scattered throughout the literature and have not previously appeared in book form, the common denominator being the theory of planar vector fields (real or complex). A second common feature is the study of bifurcations of dynamical systems. Moreover, the book links fields that have developed independently and signposts problems that are likely to become significant in the future. The following subjects are covered: new tools for local and global...
A number of recent significant developments in the theory of differential equations are presented in an elementary fashion, many of which are scattere...
The book consists of the lectures presented at the NATO ASI on Algebras and Orders' held in 1991 at the Universite de Montreal. The lectures cover a broad spectrum of topics in universal algebra, Boolean algebras, lattices and orders, and their links with graphs, relations, topology and theoretical computer science. More specifically, the contributions deal with the following topics: Abstract clone theory (W. Taylor); Hyperidentities and hypervarieties (D. Schweigert); Arithmetical algebras and varieties (A. Pixley); Boolean algebras with operators (B. Jonsson); Algebraic duality (B. Davey);...
The book consists of the lectures presented at the NATO ASI on Algebras and Orders' held in 1991 at the Universite de Montreal. The lectures cover a b...
The last decade has seen two parallel developments, one in computer science, the other in mathematics, both dealing with the same kind of combinatorial structures: networks with strong symmetry properties or, in graph-theoretical language, vertex-transitive graphs, in particular their prototypical examples, Cayley graphs. In the design of large interconnection networks it was realised that many of the most fre quently used models for such networks are Cayley graphs of various well-known groups. This has spawned a considerable amount of activity in the study of the combinatorial properties of...
The last decade has seen two parallel developments, one in computer science, the other in mathematics, both dealing with the same kind of combinatoria...
What is the "archetypal" image that comes to mind when one thinks of an infinite graph? What with a finite graph - when it is thought of as opposed to an infinite one? What structural elements are typical for either - by their presence or absence - yet provide a common ground for both? In planning the workshop on "Cycles and Rays" it had been intended from the outset to bring infinite graphs to the fore as much as possible. There never had been a graph theoretical meeting in which infinite graphs were more than "also rans", let alone one in which they were a central theme. In part, this is a...
What is the "archetypal" image that comes to mind when one thinks of an infinite graph? What with a finite graph - when it is thought of as opposed to...