In the last decade it has become increasingly evident that strong correla tions between electrons are an essential and unifying factor in such diverse phenomena within solid state physics as high-temperature superconductivity, colossal magnetoresistance, the quantum Hall effect, heavy-fermion metals and Coulomb blockade in single-electron transistors. A new paradigmofnon FermiLiquidbehaviourisalsoemergingand, inanumberofsystems, replacing the Fermi liquid, which has been the cornerstone ofthe physics of metals and superconductors for the pastdecades. In spite of major achievements, the...
In the last decade it has become increasingly evident that strong correla tions between electrons are an essential and unifying factor in such diverse...
In the last decade it has become increasingly evident that strong correla tions between electrons are an essential and unifying factor in such diverse phenomena within solid state physics as high-temperature superconductivity, colossal magnetoresistance, the quantum Hall effect, heavy-fermion metals and Coulomb blockade in single-electron transistors. A new paradigmofnon FermiLiquidbehaviourisalsoemergingand, inanumberofsystems, replacing the Fermi liquid, which has been the cornerstone ofthe physics of metals and superconductors for the pastdecades. In spite of major achievements, the...
In the last decade it has become increasingly evident that strong correla tions between electrons are an essential and unifying factor in such diverse...