Iu A. Mitropol'skii Yu A. Mitropolski Yuri A. Mitropolsky
Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients, and a second part, relatively small compared with the first, containing nonlinear terms. Such a system is said to be weakly nonlinear. The small terms rendering the system nonlinear are referred to as perturbations. A weakly nonlinear system is called quasi-linear and is governed by quasi-linear differential equations. We will be interested in systems that reduce to harmonic oscillators in the absence of perturbations. This book is devoted...
Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients...