Limit theorems for random sequences may conventionally be divided into two large parts, one of them dealing with convergence of distributions (weak limit theorems) and the other, with almost sure convergence, that is to say, with asymptotic prop erties of almost all sample paths of the sequences involved (strong limit theorems). Although either of these directions is closely related to another one, each of them has its own range of specific problems, as well as the own methodology for solving the underlying problems. This book is devoted to the second of the above mentioned lines, which means...
Limit theorems for random sequences may conventionally be divided into two large parts, one of them dealing with convergence of distributions (weak li...
This text covers the study of metric and other close characteristics of different spaces and classes of random variables and the application of the entropy method to the investigation of properties of stochastic processes whose values, or increments, belong to given spaces. The following processes appear in detail: pre-Gaussian processes, shot noise processes representable as integrals over processes with independent increments, quadratically Gaussian processes, and, in particular, correlogram-type estimates of the correlation function of a stationary Gaussian process, jointly strictly...
This text covers the study of metric and other close characteristics of different spaces and classes of random variables and the application of the en...