In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe? It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a...
In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riem...
Paul Halmos will celebrate his 75th birthday on the 3rd of March 1991. This volume, from colleagues, is an expression of affection for the man and respect for his contributions as scholar, writer, and teacher. It contains articles about Paul, about the times in which he worked and the places he has been, and about mathematics. Paul has furthered his profession in many ways and this collection reflects that diversity. Articles about Paul are not biographical, but rather tell about his ideas, his philosophy, and his style. Articles about the times and places in which Paul has worked describe...
Paul Halmos will celebrate his 75th birthday on the 3rd of March 1991. This volume, from colleagues, is an expression of affection for the man and res...
The Spring 1986 Program in Geometric Function Theory (GFT) at the Mathematical Sciences Research Institute (MSRI) brought together mathe maticians interested in Teichmiiller theory, quasiconformal mappings, Kleinian groups, univalent functions and value distribution. It included a large and stimulating Workshop, preceded by a mini-conference on String Theory attended by both mathematicians and physicists. These activities produced interesting results and fruitful interactions among the partici pants. These volumes represent only a portion of the papers that will even tually result from ideas...
The Spring 1986 Program in Geometric Function Theory (GFT) at the Mathematical Sciences Research Institute (MSRI) brought together mathe maticians int...
The Spring 1986 Program in Geometric Function Theory (GFT) at the Mathematical Sciences Research Institute (MSRI) brought together mathe maticians interested in Teichmiiller theory, quasiconformal mappings, Kleinian groups, univalent functions and value distribution. It included a large and stimulating Workshop, preceded by a mini-conference on String Theory attended by both mathematicians and physicists. These activities produced interesting results and fruitful interactions among the partici pants. These volumes represent only a portion of the papers that will even tually result from ideas...
The Spring 1986 Program in Geometric Function Theory (GFT) at the Mathematical Sciences Research Institute (MSRI) brought together mathe maticians int...
Paul Halmos will celebrate his 75th birthday on the 3rd of March 1991. This volume, from colleagues, is an expression of affection for the man and respect for his contributions as scholar, writer, and teacher. It contains articles about Paul, about the times in which he worked and the places he has been, and about mathematics. Paul has furthered his profession in many ways and this collection reflects that diversity. Articles about Paul are not biographical, but rather tell about his ideas, his philosophy, and his style. Articles about the times and places in which Paul has worked describe...
Paul Halmos will celebrate his 75th birthday on the 3rd of March 1991. This volume, from colleagues, is an expression of affection for the man and res...
Duringhis short lifeOswald Teichmuller wrote 34 papers, all reproduced in this volume.
From thePreface: "Teichmuller's most influential paper was called "Extremale quasikonforme Abbildungen und quadratische Differentiale" (No. 20 in this collection). At the time of its appearance several special cases of extremal problems for quasiconformal mappings had already been solved, and Teichmuller was able to draw on a substantial fund of experience. Nevertheless, it was a remarkable feat to extract the common features of all the known examples and formulate a conjecture, now known as...
Duringhis short lifeOswald Teichmuller wrote 34 papers, all reproduced in this volume.
From thePreface: "Teichmuller's most influential pape...