One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on curves, gleaned in part through the theorems of Mordell, Weil, Siegel, and Faltings. It has become clear that the study of rational and integral points has deep connections to other branches of mathematics: complex algebraic geometry, Galois and etale cohomology, transcendence theory and diophantine approximation, harmonic analysis, automorphic forms, and analytic number theory.
This text, which focuses on higher dimensional varieties,...
One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on cu...
This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.
This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dim...