Hyperspectral Imaging: Techniques for Spectral Detection and Classification is an outgrowth of the research conducted over the years in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. It explores applications of statistical signal processing to hyperspectral imaging and further develops non-literal (spectral) techniques for subpixel detection and mixed pixel classification. This text is the first of its kind on the topic and can be considered a recipe book offering various techniques for hyperspectral data...
Hyperspectral Imaging: Techniques for Spectral Detection and Classification is an outgrowth of the research conducted over the years ...
Authored by a panel of experts in the field, this book focuses on hyperspectral image analysis, systems, and applications. With discussion of application-based projects and case studies, this professional reference will bring you up-to-date on this pervasive technology, wether you are working in the military and defense fields, or in remote sensing technology, geoscience, or agriculture.
Authored by a panel of experts in the field, this book focuses on hyperspectral image analysis, systems, and applications. With discussion of applicat...
The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive HyperSpectral Imaging (PHSI) and Recursive HyperSpectral Imaging (RHSI). Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are...
The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts ...
This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author's books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016.
This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging a...