This book provides an approach to the study of perturbation and discretization effects on the long-time behavior of dynamical and control systems. It analyzes the impact of time and space discretizations on asymptotically stable attracting sets, attractors, asumptotically controllable sets and their respective domains of attractions and reachable sets. Combining robust stability concepts from nonlinear control theory, techniques from optimal control and differential games and methods from nonsmooth analysis, both qualitative and quantitative results are obtained and new algorithms are...
This book provides an approach to the study of perturbation and discretization effects on the long-time behavior of dynamical and control systems. It ...
Nonlinear Model Predictive Control is a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. NMPC schemes with and without stabilizing terminal constraints are detailed and intuitive examples illustrate the performance of different NMPC...
Nonlinear Model Predictive Control is a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-...