Geometric algebra (GA), also known as Clifford algebra, is a powerful unifying framework for geometric computations that extends the classical techniques of linear algebra and vector calculus in a structural manner. Its benefits include cleaner computer-program solutions for known geometric computation tasks, and the ability to address increasingly more involved applications.
This highly practical Guide to Geometric Algebra in Practice reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics...
Geometric algebra (GA), also known as Clifford algebra, is a powerful unifying framework for geometric computations that extends the classical tech...
Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include...
Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, ...